MAMIBIA UMIVERSITY OF SCIEПCE AПD TECHחOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

SCHOOL OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: O7BOSC	LEVEL: 6
COURSE CODE: EAM601S	COURSE NAME: ELECTRICITY AND MAGNETISM
SESSION: JUNE 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION PAPER

EXAMINER (S)	PROF MUNAWAR KARIM
MODERATOR:	DR VAINO INDONGO

INSTRUCTIONS

1. Write all your answers in the answer booklet provided.
2. Read the whole question before answering.
3. Begin each question on a new page.

PERMISSIBLE MATERIALS

Scientific Calculator

1) In the diagram below there is a collection of charges. + means $+q$ and - means $-q$. What is the flux through the surface of the sphere? Recall flux $\Phi_{E}=\oint \vec{E} \cdot \overrightarrow{d a} . \quad$ (20 points)

2) Given a uniformly charged sphere of radius R and charge Q :
a) Calculate the E-field inside the sphere
b) Calculate the E-field outside the sphere
c) Draw a graph of the E-field both inside and outside the sphere
d) Identify points where the field is maximum and minimum. There is more than one point where the field is minimum.
3) Two point-charges Q_{1} and Q_{2} are separated by a distance r.
a) What is the effect on the force between the charges if Q_{1} is changed to $2 Q_{1}$? (4 points)
b) What is the effect on the force between the charges if r is changed to $2 r$? (4 points)
c) What is the force as $r \rightarrow \infty$?
4) You are required to measure an unknown charge Q.
a) Set up a force balance with two identically charged spheres each carrying a charge Q and of mass m suspended from two light strings of length l. (5 points)
(2)
b) Draw a free-body diagram depicting equilibrium between the tension on the string \vec{T}, weight $m \vec{g}$ and the Coulomb force \vec{F}. Using Newton's Second law write a vector equation depicting equilibrium.
c) Equate vertical and horizontal components of the three forces.
d) Solve the equations for the force in terms of l, m and g.
e) From the force calculate the unknown charge in terms of l, m and g. Let $a=$

$$
\begin{equation*}
0.2 \mathrm{~m}, l=1.0 \mathrm{~m}, \mathrm{~m}=0.005 \mathrm{~kg}, k=9 \times 10^{9}, g=9.80 \mathrm{~m} / \mathrm{s}^{2} . \tag{3points}
\end{equation*}
$$

5) Two charges $q_{1}=2 n C$ and $q_{2}=+0.25 n C$ are located on the x-axis separated by 0.3 m .

A third charge $q_{3}=-0.5 n C$ is also placed on the x-axis.
a) Set up the equation for the forces acting on q_{3} due to q_{1} and q_{2}.
b) Find the locations (two solutions) on the x -axis where the force on $q_{3}=0$. (10 points)
6) A solid conductor of radius R carries a current I along its axis.
a) Using Ampere's law calculate the B-field inside the conductor. Show the direction of the B-field.
b) The B-field outside the conductor. Show the direction of the B-field.
c) For values of $R=0.01 \mathrm{~m}, I=10 \mathrm{~A}$, locate and calculate the maximum B-field. Use $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$.

